Component descriptions:

Program Counter (PC)
This 32 bit edge-triggered register holds the memory address of the next instruction to be loaded from memory.

Memory
This edge-triggered memory device holds both instructions and data. It is addressed by either the ALU_OUT or the PC.

Instruction Register
An edge-triggered 32 bit register used to store the output of the memory (instructions only) so that it may be accessed in the 2nd CPU cycle.

Register File
This structure contains all of the registers numbered #0-#31. It has 4 inputs [Read R1/R2, Write Reg/Data] and 2 outputs [Read Data 1/2]. The loading of this register file is controlled by an edge triggered write enable, Reg_write.

ALU
The core of the MIPS CPU has 3 inputs and 2 outputs. Two of the inputs [32 bits] are the operands and the third input is the operator. A zero flag is set if the value of the result [32 bits], another output, is all zeros. During R-type instructions the ALU performs operations on two values from the register file. During I type instructions, one of the operands [rs] comes from the register file, the other operand comes from an constant/offset that is either zero or sign extended.

Performs AND, OR, ADD, SUB, SLT based on function select bits

Adder
This component simply adds the 2 operands that are selected by multiplexers. This component is needed to be able to compute the next instruction[PC+4] or a branch address. [PC’+BranchAddr, PC’ is PC+4 from the 1st cycle of execution]
Sign Extender
This component is simply an AND gate with its it inputs being a control line Signex_EN and IR[15]. When the Sign extend enable bit is activated to logic 1 and if IR[15] is 1 [a negative 2’s complement constant] then the output will be routed to the upper 16 bits of IMM_Value. Any other case the upper bits will be all zeros.
Shift Left by 2 Unit
This component shifts the value of IMM_Value by 2 bits to the left.
Multiplexers –
These devices set up the data pathway for each instruction. The name and purpose of each are as follows:
· PC_LoadSelect

· This chooses which value to store in the PC. For JR, the PC is set to the register specified in the rs field, otherwise the PC is either set to the output Sel_Jump or if a branch instruction proved to evaluate to false, the current PC is not changed. This feedback of the PC is needed because is PC_Write signal is going to be active in all cycles except for during the R-type and the non-branch I-type instructions.
· Sel_JUMP
· This chooses either the output of the adder or the Jump address for J and JAL instructions.

· PC_ALU

· This mux chooses whether to address the memory with the PC or a computed memory location.

· Br_set
· A mux to choose the constant 4 in the first cycle and the output of the of the shift left unit in the second cycle.

· Reg_sel

· This mux picks which register is to be written to during the 2nd cycle. R#31 is hardwired because JAL is a J-type instruction and does not explicitly encode R#31 in the instruction.
· WRData
· This mux selects which data is to be sent to the register file. For JAL instructions, it is PC’ (PC+4). For LUI it is the zero extended IR[15-0]. For other R and I type, it is ALU_OUT.
· IMM_Rtype

· This mux selects the 2nd input to the ALU. For I type, the ALU receives IMM_Value, and for R type instructions, the ALU receives Read Data 2 (rt).

[image: image1.emf]&

 This symbol on the CPU diagram simply means that the inputs are
concatenated together to form a new signal.

Instruction Formats: MIPS type instruction set with limited instructions implemented
R type:

	OPCODE
	RS
	RT
	RD
	UNUSED

31
 26 25 21 20 16 15 11 10

0

I type:

	OPCODE
	RS
	RT
	IMMEDIATE

31
 26 25 21 20 16 15

0

J type:

	OPCODE
	ADDRESS

31
 26 25

0

Register Transfers by Instruction
For all instructions, the 1st cycle is the same since every instruction needs to be fetched and decoded.

1st Cycle:
IR=Memory[PC]

PC=PC+4

The following transfers take place in the 2nd Cycle:

LW

ALU_OUT=[rs+signextended(offset)]

rt=Memory[ALU_OUT]

SW

ALU_OUT=[rs+signextended(offset)]

Memory[ALU_OUT]=rt
LUI

rt=zeroExtended(immediate)

ADD

ALU_OUT=rs+rt

rd=ALU_OUT

ADDI

ALU_OUT=rs+signextended(immediate)

rt=ALU_OUT

SUB

ALU_OUT=rs - rt

rd=ALU_OUT

AND

ALU_OUT =rs AND rt

rd=ALU_OUT

ANDI

ALU_OUT=rs && signextended(immediate)

rt=ALU_OUT

OR

ALU_OUT =rs AND rt

rd=ALU_OUT

ORI

ALU_OUT=rs || signextended(immediate)

rt=ALU_OUT

SLT

ALU_OUT=rs <SLT> rt // The ALU has SLT selected by the function select.

rd=ALU_OUT

SLTI

ALU_OUT=rs <SLT> signextened(immediate)

// The ALU has SLT selected by the function select which now is set by the controller and not the instruction.

rt=ALU_OUT

BEQ

ALU=rs - rt

PC=PC+ShiftedLeftby2(signextended(offset))

BNE

ALU=rs - rt

PC=PC+ShiftedLeftby2(signextended(offset))

//based on the zero flag and opcode, the controller will select if the computed address is actually loaded into PC

J

PC=PC(31-28)&IR(25-0)&(“00”)

JAL

R#31=PC
//PC is already PC+4 from 1st cycle

PC=PC(31-28)&IR(25-0)&(“00”)

JR

PC=rs

_1172593670.vsd
&

